Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.696
Filtrar
1.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567819

RESUMO

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Assuntos
Complexo de Reconhecimento de Origem , Proteínas de Saccharomyces cerevisiae , Humanos , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação/genética , Sítios de Ligação , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromossomos Humanos/metabolismo , DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(12): e2307309121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489381

RESUMO

The organization of interphase chromosomes in a number of species is starting to emerge thanks to advances in a variety of experimental techniques. However, much less is known about the dynamics, especially in the functional states of chromatin. Some experiments have shown that the motility of individual loci in human interphase chromosome decreases during transcription and increases upon inhibiting transcription. This is a counterintuitive finding because it is thought that the active mechanical force (F) on the order of ten piconewtons, generated by RNA polymerase II (RNAPII) that is presumably transmitted to the gene-rich region of the chromatin, would render it more open, thus enhancing the mobility. We developed a minimal active copolymer model for interphase chromosomes to investigate how F affects the dynamical properties of chromatin. The movements of the loci in the gene-rich region are suppressed in an intermediate range of F and are enhanced at small F values, which has also been observed in experiments. In the intermediate F, the bond length between consecutive loci increases, becoming commensurate with the distance at the minimum of the attractive interaction between nonbonded loci. This results in a transient disorder-to-order transition, leading to a decreased mobility during transcription. Strikingly, the F-dependent change in the locus dynamics preserves the organization of the chromosome at [Formula: see text]. Transient ordering of the loci, which is not found in the polymers with random epigenetic profiles, in the gene-rich region might be a plausible mechanism for nucleating a dynamic network involving transcription factors, RNAPII, and chromatin.


Assuntos
Cromatina , Cromossomos Humanos , Humanos , Cromatina/genética , Fatores de Transcrição/genética , Interfase/genética , RNA Polimerase II/genética
3.
Elife ; 132024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240312

RESUMO

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Assuntos
Região Organizadora do Nucléolo , Precursores de RNA , Humanos , Animais , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Cromossomos Humanos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Mamíferos/genética
4.
Dokl Biochem Biophys ; 513(1): 337-340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38066319

RESUMO

Forum domains are 50-100-kb stretches of DNA delimited by the hotspots of double-strand breaks (DSBs). These domains possess coordinately expressed genes. However, molecular mechanisms of such regulation are not clear. It is assumed that the proteins specifically binding at the termini of domains can be involved in coordinated regulation of expression. In this study, we used the results of precise mapping of hotspots of DSBs and ChIP-Seq data for ten nuclear proteins in HEK293T cell line for a search of proteins specifically binding at forum-domain termini. We detected that two proteins, CBP and RAD24, which are known to be involved in epigenetic regulation of gene expression and formation of 3D chromosomal structures, bind at the termini. We assume that these proteins may be involved in coordinated expression of genes in forum domains.


Assuntos
Quebras de DNA de Cadeia Dupla , Epigênese Genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293
5.
Sci Rep ; 13(1): 14420, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660151

RESUMO

It is known that the ~ 1.6 kb Neuroblastoma BreakPoint Family (NBPF) repeats are human specific and contributing to cognitive capabilities, with increasing frequency in higher order repeat 3mer HORs (Olduvai triplets). From chimpanzee to modern human there is a discontinuous jump from 0 to ~ 50 tandemly organized 3mer HORs. Here we investigate the structure of NBPF 3mer HORs in the Neanderthal genome assembly of Pääbo et al., comparing it to the results obtained for human hg38.p14 chromosome 1. Our findings reveal corresponding NBPF 3mer HOR arrays in Neanderthals with slightly different monomer structures and numbers of HOR copies compared to humans. Additionally, we compute the NBPF 3mer HOR pattern for the complete telomere-to-telomere human genome assembly (T2T-CHM13) by Miga et al., identifying two novel tandem arrays of NBPF 3mer HOR repeats with 5 and 9 NBPF 3mer HOR copies. We hypothesize that these arrays correspond to novel NBPF genes (here referred to as NBPFA1 and NBPFA2). Further improving the quality of the Neanderthal genome using T2T-CHM13 as a reference would be of great interest in determining the presence of such distant novel NBPF genes in the Neanderthal genome and enhancing our understanding of human evolution.


Assuntos
Homem de Neandertal , Neuroblastoma , Humanos , Animais , Homem de Neandertal/genética , Cromossomos Humanos , Cromossomos Humanos Par 1 , Família , Pan troglodytes
6.
Genome Biol ; 24(1): 205, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697406

RESUMO

Resolving complex genomic regions rich in segmental duplications (SDs) is challenging due to the high error rate of long-read sequencing. Here, we describe a targeted approach with a novel genome assembler PhaseDancer that extends SD-rich regions of interest iteratively. We validate its robustness and efficiency using a golden-standard set of human BAC clones and in silico-generated SDs with predefined evolutionary scenarios. PhaseDancer enables extension of the incomplete complex SD-rich subtelomeric regions of Great Ape chromosomes orthologous to the human chromosome 2 (HSA2) fusion site, informing a model of HSA2 formation and unravelling the evolution of human and Great Ape genomes.


Assuntos
Hominidae , Humanos , Animais , Hominidae/genética , Duplicações Segmentares Genômicas , Telômero , Genômica , Cromossomos Humanos
7.
PLoS Genet ; 19(8): e1010399, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578977

RESUMO

Evidence of interbreeding between archaic hominins and humans comes from methods that infer the locations of segments of archaic haplotypes, or 'archaic coverage' using the genomes of people living today. As more estimates of archaic coverage have emerged, it has become clear that most of this coverage is found on the autosomes- very little is retained on chromosome X. Here, we summarize published estimates of archaic coverage on autosomes and chromosome X from extant human samples. We find on average 7 times more archaic coverage on autosomes than chromosome X, and identify broad continental patterns in this ratio: greatest in European samples, and least in South Asian samples. We also perform extensive simulation studies to investigate how the amount of archaic coverage, lengths of coverage, and rates of purging of archaic coverage are affected by sex-bias caused by an unequal sex ratio within the archaic introgressors. Our results generally confirm that, with increasing male sex-bias, less archaic coverage is retained on chromosome X. Ours is the first study to explicitly model such sex-bias and its potential role in creating the dearth of archaic coverage on chromosome X.


Assuntos
Introgressão Genética , Genoma Humano , Hominidae , Cromossomo X , Animais , Humanos , Masculino , Povo Asiático/genética , Genoma , Genoma Humano/genética , Hominidae/genética , Homem de Neandertal/genética , Cromossomo X/genética , Fatores Sexuais , Haplótipos/genética , Introgressão Genética/genética , Cromossomos Humanos/genética , Feminino , População do Sul da Ásia/genética , População Europeia/genética
8.
Nature ; 620(7972): 209-217, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438531

RESUMO

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Assuntos
Cromatina , Posicionamento Cromossômico , Cromossomos Humanos , Genoma Humano , Quinases da Glicogênio Sintase , Ensaios de Triagem em Larga Escala , Análise de Célula Única , Humanos , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamento Cromossômico/efeitos dos fármacos , Cromossomos Humanos/efeitos dos fármacos , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/análise , DNA/metabolismo , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Quinases da Glicogênio Sintase/antagonistas & inibidores , Quinases da Glicogênio Sintase/deficiência , Quinases da Glicogênio Sintase/genética , Ensaios de Triagem em Larga Escala/métodos , Interfase , Reprodutibilidade dos Testes , RNA/análise , RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única/métodos
9.
Genome Biol ; 24(1): 158, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408019

RESUMO

Genome browsers facilitate integrated analysis of multiple genomics datasets yet visualize only a few regions at a time and lack statistical functions for extracting meaningful information. We present HiCognition, a visual exploration and machine-learning tool based on a new genomic region set concept, enabling detection of patterns and associations between 3D chromosome conformation and collections of 1D genomics profiles of any type. By revealing how transcription and cohesion subunit isoforms contribute to chromosome conformation, we showcase how the flexible user interface and machine learning tools of HiCognition help to understand the relationship between the structure and function of the genome.


Assuntos
Genoma Humano , Genômica , Software , Humanos , Genômica/métodos , Cromossomos Humanos , Aprendizado de Máquina
10.
Nature ; 618(7967): 1049-1056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316668

RESUMO

Chromothripsis, the shattering and imperfect reassembly of one (or a few) chromosome(s)1, is an ubiquitous2 mutational process generating localized and complex chromosomal rearrangements that drive genome evolution in cancer. Chromothripsis can be initiated by mis-segregation errors in mitosis3,4 or DNA metabolism5-7 that lead to entrapment of chromosomes within micronuclei and their subsequent fragmentation in the next interphase or following mitotic entry6,8-10. Here we use inducible degrons to demonstrate that chromothriptically produced pieces of a micronucleated chromosome are tethered together in mitosis by a protein complex consisting of mediator of DNA damage checkpoint 1 (MDC1), DNA topoisomerase II-binding protein 1 (TOPBP1) and cellular inhibitor of PP2A (CIP2A), thereby enabling en masse segregation to the same daughter cell. Such tethering is shown to be crucial for the viability of cells undergoing chromosome mis-segregation and shattering after transient inactivation of the spindle assembly checkpoint. Transient, degron-induced reduction in CIP2A following chromosome micronucleation-dependent chromosome shattering is shown to drive acquisition of segmental deletions and inversions. Analyses of pancancer tumour genomes showed that expression of CIP2A and TOPBP1 was increased overall in cancers with genomic rearrangements, including copy number-neutral chromothripsis with minimal deletions, but comparatively reduced in cancers with canonical chromothripsis in which deletions were frequent. Thus, chromatin-bound tethers maintain the proximity of fragments of a shattered chromosome enabling their re-encapsulation into, and religation within, a daughter cell nucleus to form heritable, chromothriptically rearranged chromosomes found in the majority of human cancers.


Assuntos
Núcleo Celular , Segregação de Cromossomos , Cromossomos Humanos , Cromotripsia , Mitose , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Neoplasias/genética , Cromatina/genética
11.
Nature ; 618(7967): 1041-1048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165191

RESUMO

Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.


Assuntos
Cromossomos Humanos , Cromotripsia , Micronúcleos com Defeito Cromossômico , Mitose , Humanos , Centrômero , Cromossomos Humanos/genética , DNA/genética , DNA/metabolismo , Variações do Número de Cópias de DNA , Interfase , Mitose/genética , Neoplasias/genética
12.
Nature ; 617(7960): 335-343, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165241

RESUMO

The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.


Assuntos
Centrômero , Cromossomos Humanos , Recombinação Genética , Humanos , Centrômero/genética , Cromossomos Humanos/genética , DNA Ribossômico/genética , Recombinação Genética/genética , Translocação Genética/genética , Citogenética , Telômero/genética
13.
Biomolecules ; 13(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37238599

RESUMO

Chromosomal polymorphisms are structural variations in chromosomes that define the genomic variance of a species. These alterations are recurrent in the general population, and some of them appear to be more recurrent in the infertile population. Human chromosome 9 is highly heteromorphic, and how its rearrangement affects male fertility remains to be fully investigated. In this study, we aimed to investigate the association between the polymorphic rearrangements of chromosome 9 and male infertility via an Italian cohort of male infertile patients. Cytogenetic analysis was carried out, along with Y microdeletion screening, semen analysis, fluorescence in situ hybridization, and TUNEL assays using spermatic cells. Chromosome 9 rearrangements were observed in six patients: three of them showed a pericentric inversion, while the others showed a polymorphic heterochromatin variant 9qh. Of these, four patients exhibited oligozoospermia associated with teratozoospermia, along with a percentage of aneuploidy in the sperm of above 9%, in particular, an increase in XY disomy. Additionally, high values for sperm DNA fragmentation (≥30%) were observed in two patients. None of them had microdeletions to the AZF loci on chromosome Y. Our results suggest that polymorphic rearrangements of chromosome 9 might be associated with abnormalities in sperm quality due to incorrect spermatogenesis regulation.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Hibridização in Situ Fluorescente , Infertilidade Masculina/genética , Espermatozoides/fisiologia , Espermatogênese/genética , Cromossomos Humanos , Cromossomos Humanos Par 9
14.
Methods Mol Biol ; 2655: 57-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212988

RESUMO

Human chromosomes have a complex 3D spatial organization in the cell nucleus, which comprises a hierarchy of physical interactions across genomic scales. Such an architecture serves important functional roles, as genes and their regulators have to physically interact to control gene regulation. However, the molecular mechanisms underlying the formation of those contacts remain poorly understood. Here, we describe a polymer-physics-based approach to investigate the machinery shaping genome folding and function. In silico model predictions on DNA single-molecule 3D structures are validated against independent super-resolution single-cell microscopy data, supporting a scenario whereby chromosome architecture is controlled by thermodynamics mechanisms of phase separation. Finally, as an application of our methods, the validated single-polymer conformations of the theory are used to benchmark powerful technologies to probe genome structure, such as Hi-C, SPRITE, and GAM.


Assuntos
Cromatina , Polímeros , Humanos , Polímeros/química , Cromossomos/genética , Núcleo Celular/química , DNA/genética , DNA/análise , Cromossomos Humanos , Física
15.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249575

RESUMO

The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.


Assuntos
Músculo Esquelético , Termogênese , Camundongos , Humanos , Animais , Músculo Esquelético/metabolismo , Termogênese/genética , Metabolismo Energético/fisiologia , Proteolipídeos/metabolismo , Citoplasma/metabolismo , Cromossomos Humanos/metabolismo , Cálcio/metabolismo
16.
Funct Integr Genomics ; 23(2): 174, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219715

RESUMO

Microdeletion of the 15q11.2 BP1-BP2 region, also known as Burnside-Butler susceptibility region, is associated with phenotypes like delayed developmental language abilities along with motor skill disabilities, combined with behavioral and emotional problems. The 15q11.2 microdeletion region harbors four evolutionarily conserved and non-imprinted protein-coding genes: NIPA1, NIPA2, CYFIP1, and TUBGCP5. This microdeletion is a rare copy number variation frequently associated with several pathogenic conditions in humans. The aim of this study is to investigate the RNA-binding proteins binding with the four genes present in 15q11.2 BP1-BP2 microdeletion region. The results of this study will help to better understand the molecular intricacies of the Burnside-Butler Syndrome and also the possible involvement of these interactions in the disease aetiology. Our results of enhanced crosslinking and immunoprecipitation data analysis indicate that most of the RBPs interacting with the 15q11.2 region are involved in the post-transcriptional regulation of the concerned genes. The RBPs binding to this region are found from the in silico analysis, and the interaction of RBPs like FASTKD2 and EFTUD2 with exon-intron junction sequence of CYFIP1 and TUBGCP5 has also been validated by combined EMSA and western blotting experiment. The exon-intron junction binding nature of these proteins suggests their potential involvement in splicing process. This study may help to understand the intricate relationship of RBPs with mRNAs within this region, along with their functional significance in normal development, and lack thereof, in neurodevelopmental disorders. This understanding will help in the formulation of better therapeutic approaches.


Assuntos
Cromossomos Humanos , Variações do Número de Cópias de DNA , Humanos , Proteínas de Ligação a RNA , Íntrons , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5
17.
Cell Mol Life Sci ; 80(5): 121, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043028

RESUMO

Although they are organelles without a limiting membrane, nucleoli have an exclusive structure, built upon the rDNA-rich acrocentric short arms of five human chromosomes (nucleolar organizer regions or NORs). This has raised the question: what are the structural features of a chromosome required for its inclusion in a nucleolus? Previous work has suggested that sequences adjacent to the tandemly repeated rDNA repeat units (DJ, distal junction sequence) may be involved, and we have extended such studies by addressing several issues related to the requirements for the association of NORs with nucleoli. We exploited both a set of somatic cell hybrids containing individual human acrocentric chromosomes and a set of Human Artificial Chromosomes (HACs) carrying different parts of a NOR, including an rDNA unit or DJ or PJ (proximal junction) sequence. Association of NORs with nucleoli was increased when constituent rDNA was transcribed and may be also affected by the status of heterochromatin blocks formed next to the rDNA arrays. Furthermore, our data suggest that a relatively small size DJ region, highly conserved in evolution, is also involved, along with the rDNA repeats, in the localization of p-arms of acrocentric chromosomes in nucleoli. Thus, we infer a cooperative action of rDNA sequence-stimulated by its activity-and sequences distal to rDNA contributing to incorporation into nucleoli. Analysis of NOR sequences also identified LncRNA_038958 in the DJ, a candidate transcript with the region of the suggested promoter that is located close to the DJ/rDNA boundary and contains CTCF binding sites. This LncRNA may affect RNA Polymerase I and/or nucleolar activity. Our findings provide the basis for future studies to determine which RNAs and proteins interact critically with NOR sequences to organize the higher-order structure of nucleoli and their function in normal cells and pathological states.


Assuntos
Região Organizadora do Nucléolo , RNA Longo não Codificante , Humanos , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , DNA Ribossômico/genética , RNA Longo não Codificante/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromossomos Humanos/metabolismo
18.
Nature ; 615(7954): 925-933, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922594

RESUMO

Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies1-8. However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS). This event is characterized by reduced segregation between short and long chromosomes, A and B subcompartments and adjacent chromatin domains. LCS is driven by the downregulation of CTCF and H3K9me3 in cells that bypassed activation of the tetraploid checkpoint. Longitudinal analyses revealed that LCS primes genomic regions for subcompartment repositioning in WGD cells. This results in chromatin and epigenetic changes associated with oncogene activation in tumours ensuing from WGD cells. Notably, subcompartment repositioning events were largely independent of chromosomal alterations, which indicates that these were complementary mechanisms contributing to tumour development and progression. Overall, LCS initiates chromatin conformation changes that ultimately result in oncogenic epigenetic and transcriptional modifications, which suggests that chromatin evolution is a hallmark of WGD-driven cancer.


Assuntos
Cromatina , Aberrações Cromossômicas , Segregação de Cromossomos , Cromossomos Humanos , Genoma Humano , Neoplasias , Humanos , Cromatina/genética , Cromatina/metabolismo , Neoplasias/genética , Cromossomos Humanos/genética , Genoma Humano/genética , Segregação de Cromossomos/genética , Carcinogênese/genética , Epigênese Genética , Progressão da Doença , Transcrição Gênica , Regulação Neoplásica da Expressão Gênica
19.
Nucleic Acids Res ; 51(9): 4237-4251, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36864748

RESUMO

Human papillomavirus (HPV) integration is a critical step in cervical cancer development; however, the oncogenic mechanism at the genome-wide transcriptional level is still poorly understood. In this study, we employed integrative analysis on multi-omics data of six HPV-positive and three HPV-negative cell lines. Through HPV integration detection, super-enhancer (SE) identification, SE-associated gene expression and extrachromosomal DNA (ecDNA) investigation, we aimed to explore the genome-wide transcriptional influence of HPV integration. We identified seven high-ranking cellular SEs generated by HPV integration in total (the HPV breakpoint-induced cellular SEs, BP-cSEs), leading to intra-chromosomal and inter-chromosomal regulation of chromosomal genes. The pathway analysis revealed that the dysregulated chromosomal genes were correlated to cancer-related pathways. Importantly, we demonstrated that BP-cSEs existed in the HPV-human hybrid ecDNAs, explaining the above transcriptional alterations. Our results suggest that HPV integration generates cellular SEs that function as ecDNA to regulate unconstrained transcription, expanding the tumorigenic mechanism of HPV integration and providing insights for developing new diagnostic and therapeutic strategies.


Assuntos
DNA , Elementos Facilitadores Genéticos , Genoma Humano , Papillomavirus Humano , Infecções por Papillomavirus , Transcrição Gênica , Neoplasias do Colo do Útero , Integração Viral , Feminino , Humanos , Papillomavirus Humano/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Integração Viral/genética , Elementos Facilitadores Genéticos/genética , DNA/genética , DNA/metabolismo , Genoma Humano/genética , Carcinogênese , Pontos de Quebra do Cromossomo , Cromossomos Humanos/genética
20.
Genes (Basel) ; 14(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833448

RESUMO

Human herpes virus 6A (HHV-6A) is able to integrate into the telomeric and subtelomeric regions of human chromosomes representing chromosomally integrated HHV-6A (ciHHV-6A). The integration starts from the right direct repeat (DRR) region. It has been shown experimentally that perfect telomeric repeats (pTMR) in the DRR region are required for the integration, while the absence of the imperfect telomeric repeats (impTMR) only slightly reduces the frequency of HHV-6 integration cases. The aim of this study was to determine whether telomeric repeats within DRR may define the chromosome into which the HHV-6A integrates. We analysed 66 HHV-6A genomes obtained from public databases. Insertion and deletion patterns of DRR regions were examined. We also compared TMR within the herpes virus DRR and human chromosome sequences retrieved from the Telomere-to-Telomere consortium. Our results show that telomeric repeats in DRR in circulating and ciHHV-6A have an affinity for all human chromosomes studied and thus do not define a chromosome for integration.


Assuntos
Herpesvirus Humano 6 , Humanos , Herpesvirus Humano 6/genética , Telômero , Cromossomos Humanos , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...